Search results for " graded"

showing 10 items of 56 documents

The effect of age on cognitive performance of frontal patients

2015

Age is known to affect prefrontal brain structure and executive functioning in healthy older adults, patients with neurodegenerative conditions and TBI. Yet, no studies appear to have systematically investigated the effect of age on cognitive performance in patients with focal lesions. We investigated the effect of age on the cognitive performance of a large sample of tumour and stroke patients with focal unilateral, frontal (n=68), or non-frontal lesions (n=45) and healthy controls (n=52). We retrospectively reviewed their cross sectional cognitive and imaging data. In our frontal patients, age significantly predicted the magnitude of their impairment on two executive tests (Raven's Advanc…

AdultMaleAgingRAPM Raven's Advanced Progressive MatricesCognitive NeuroscienceExperimental and Cognitive Psychologybehavioral disciplines and activitiesArticleTBI traumatic brain injuryCVA cerebrovascular accidentExecutive functionsBehavioral NeuroscienceExecutive FunctionPFC prefrontal cortexCognitionArts and Humanities (miscellaneous)WMA white matter abnormalitiesIL Incomplete Letters andAging; Cognitive performance; Executive functions; Frontal lesions non-frontal lesions; Behavioral Neuroscience; Cognitive Neuroscience; Experimental and Cognitive Psychology; Arts and Humanities (miscellaneous)Frontal lesions non-frontal lesionnon-frontal lesionsHumansHC healthy controlsCognitive performanceRetrospective StudiesCWMA Composite White Matter AbnormalitiesFrontal lesionsBrain NeoplasmsGNT Graded Naming TestAge FactorsBrainMiddle AgedFrontal LobeStrokeFrontal lesions non-frontal lesionsIQ Intelligence QuotientStroop TestFemaleNART National Adult Reading TestNeuropsychologia
researchProduct

Group graded algebras and almost polynomial growth

2011

Let F be a field of characteristic 0, G a finite abelian group and A a G-graded algebra. We prove that A generates a variety of G-graded algebras of almost polynomial growth if and only if A has the same graded identities as one of the following algebras: (1) FCp, the group algebra of a cyclic group of order p, where p is a prime number and p||G|; (2) UT2G(F), the algebra of 2×2 upper triangular matrices over F endowed with an elementary G-grading; (3) E, the infinite dimensional Grassmann algebra with trivial G-grading; (4) in case 2||G|, EZ2, the Grassmann algebra with canonical Z2-grading.

Algebra and Number TheoryGraded algebra Polynomial identity Growth CodimensionsMathematics::Commutative AlgebraSubalgebraUniversal enveloping algebraGrowthPolynomial identityGraded algebraCodimensionsGraded Lie algebraFiltered algebraCombinatoricsSettore MAT/02 - AlgebraDifferential graded algebraDivision algebraAlgebra representationCellular algebraMathematics
researchProduct

A note on cocharacter sequence of Jordan upper triangular matrix algebra

2016

Let UJn(F) be the Jordan algebra of n × n upper triangular matrices over a field F of characteristic zero. This paper is devoted to the study of polynomial identities satisfied by UJ2(F) and UJ3(F). In particular, the goal is twofold. On one hand, we complete the description of G-graded polynomial identities of UJ2(F), where G is a finite abelian group. On the other hand, we compute the Gelfand–Kirillov dimension of the relatively free algebra of UJ2(F) and we give a bound for the Gelfand–Kirillov dimension of the relatively free algebra of UJ3(F).

Algebra and Number TheoryJordan algebraQuaternion algebraMathematics::Rings and Algebras010102 general mathematicsZero (complex analysis)Triangular matrixgrowth of algebras010103 numerical & computational mathematics01 natural sciencesgraded Jordan algebraCombinatoricsAlgebraFiltered algebraSettore MAT/02 - AlgebraDifferential graded algebraFree algebraAlgebra representationGraded identitie0101 mathematicsMathematics
researchProduct

Elaboration of metal / ceramic functionally graded materials by SPS for ballistic protection

2016

The objective is to improve ballistic performance of armors. A perfect armor combines ductility to resistto the impact and high hardness to stop projectile’s fragments. However, such an association of properties is inconsistent witha single material. The solution is to perform a functionally graded material (FGM) with a ductile metal at the back side of thesample and a hard ceramic on the top side. Non-conventional technologies like Spark Plasma Sintering allow joining orsintering all types of materials with different and additional properties. Furthermore, with this technique, high heating ratescan be achieved, limiting grain growth and resulting in a fine microstructure. The goal is to st…

Ceramic/metalMatériau à gradient de fonction[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryFunctionally graded materialSpark Plasma SinteringCéramique/métal
researchProduct

Y-proper graded cocharacters and codimensions of upper triangular matrices of size 2, 3, 4

2012

Abstract Let F be a field of characteristic 0. We consider the upper triangular matrices with entries in F of size 2, 3 and 4 endowed with the grading induced by that of Vasilovsky. In this paper we give explicit computation for the multiplicities of the Y -proper graded cocharacters and codimensions of these algebras.

CombinatoricsSettore MAT/02 - AlgebraAlgebra and Number TheoryMathematics::Commutative AlgebraGraded identitiesComputationPolynomial identities graded identitiesTriangular matrixPolynomial identitiesMathematicsJournal of Algebra
researchProduct

Graded polynomial identities and codimensions: Computing the exponential growth

2010

Abstract Let G be a finite abelian group and A a G-graded algebra over a field of characteristic zero. This paper is devoted to a quantitative study of the graded polynomial identities satisfied by A. We study the asymptotic behavior of c n G ( A ) , n = 1 , 2 , … , the sequence of graded codimensions of A and we prove that if A satisfies an ordinary polynomial identity, lim n → ∞ c n G ( A ) n exists and is an integer. We give an explicit way of computing such integer by proving that it equals the dimension of a suitable finite dimension semisimple G × Z 2 -graded algebra related to A.

Discrete mathematicsHilbert series and Hilbert polynomialPolynomialMathematics(all)Mathematics::Commutative AlgebraGeneral MathematicsGraded ringZero (complex analysis)GrowthPolynomial identityGraded algebraCodimensionssymbols.namesakepolynomial identity growthIntegerDifferential graded algebrasymbolsAbelian groupAlgebra over a fieldMathematicsAdvances in Mathematics
researchProduct

Graded algebras with polynomial growth of their codimensions

2015

Abstract Let A be an algebra over a field of characteristic 0 and assume A is graded by a finite group G . We study combinatorial and asymptotic properties of the G -graded polynomial identities of A provided A is of polynomial growth of the sequence of its graded codimensions. Roughly speaking this means that the ideal of graded identities is “very large”. We relate the polynomial growth of the codimensions to the module structure of the multilinear elements in the relatively free G -graded algebra in the variety generated by A . We describe the irreducible modules that can appear in the decomposition, we show that their multiplicities are eventually constant depending on the shape obtaine…

Discrete mathematicsHilbert series and Hilbert polynomialPure mathematicsPolynomialMultilinear mapAlgebra and Number TheoryMathematics::Commutative AlgebraGraded ringGraded codimensionsymbols.namesakeSettore MAT/02 - AlgebraPI exponentDifferential graded algebrasymbolsMultipartitionGraded identitieVariety (universal algebra)Algebra over a fieldCodimension growthMathematics
researchProduct

Ordinary and graded cocharacter of the Jordan algebra of 2x2 upper triangular matrices

2014

Abstract Let F be a field of characteristic zero and U J 2 ( F ) be the Jordan algebra of 2 × 2 upper triangular matrices over F . In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . For every Z 2 -grading of U J 2 ( F ) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.

Discrete mathematicsNumerical AnalysisSequenceMultilinear mapPure mathematicsAlgebra and Number TheoryJordan algebraZero (complex analysis)Triangular matrixField (mathematics)Space (mathematics)Representation theoryJordan algebras Polynomial identities Basis of identities Cocharacter Gradings Graded polynomial identitiesSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematics
researchProduct

Polynomial identities on superalgebras: Classifying linear growth

2006

Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.

Discrete mathematicsPolynomialPure mathematicsSequenceAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and AlgebrasZero (complex analysis)Field (mathematics)graded polynomial identity T_2-ideal graded codimensionsSuperalgebraSettore MAT/02 - AlgebraMathematics::Quantum AlgebraBounded functionMathematics::Representation TheoryLinear growthMathematicsJournal of Pure and Applied Algebra
researchProduct

Identities of PI-Algebras Graded by a Finite Abelian Group

2011

We consider associative PI-algebras over an algebraically closed field of zero characteristic graded by a finite abelian group G. It is proved that in this case the ideal of graded identities of a G-graded finitely generated PI-algebra coincides with the ideal of graded identities of some finite dimensional G-graded algebra. This implies that the ideal of G-graded identities of any (not necessary finitely generated) G-graded PI-algebra coincides with the ideal of G-graded identities of the Grassmann envelope of a finite dimensional (G × ℤ2)-graded algebra, and is finitely generated as GT-ideal. Similar results take place for ideals of identities with automorphisms.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and AlgebrasGraded ringElementary abelian groupGraded Lie algebraFiltered algebraDifferential graded algebraIdeal (ring theory)Abelian groupAlgebraically closed fieldMathematicsCommunications in Algebra
researchProduct